倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档中存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行相反的操作,因而称为倒排索引(Inverted Index)。

一、实例描述

  倒排索引简单地就是,根据单词,返回它在哪个文件中出现过,而且频率是多少的结果。这就像百度里的搜索,你输入一个关键字,那么百度引擎就迅速的在它的服务器里找到有该关键字的文件,并根据频率和其他的一些策略(如页面点击投票率)等来给你返回结果。这个过程中,倒排索引就起到很关键的作用。

  样例输入:

  Hadoop 倒排索引-编程知识网

  样例输出:

  Hadoop 倒排索引-编程知识网

二、设计思路

  倒排索引涉及几个过程:Map过程,Combine过程,Reduce过程。

  Map过程: 

  当你把需要处理的文档上传到hdfs时,首先默认的TextInputFormat类对输入的文件进行处理,得到文件中每一行的偏移量和这一行内容的键值对<偏移量,内容>做为map的输入。在改写map函数的时候,我们就需要考虑,怎么设计key和value的值来适合MapReduce框架,从而得到正确的结果。由于我们要得到单词,所属的文档URL,词频,而<key,value>只有两个值,那么就必须得合并其中得两个信息了。这里我们设计key=单词+URL,value=词频。即map得输出为<单词+URL,词频>,之所以将单词+URL做为key,时利用MapReduce框架自带得Map端进行排序。

  Combine过程:

  Combine过程将key值相同得value值累加,得到一个单词在文档上得词频。但是为了把相同得key交给同一个reduce处理,我们需要设计为key=单词,value=URL+词频。

  Reduce过程

  Reduce过程其实就是一个合并的过程了,只需将相同的key值的value值合并成倒排索引需要的格式即可。

三、程序代码

  程序代码如下:

 1 import java.io.IOException;
 2 import java.util.StringTokenizer;
 3 
 4 import org.apache.hadoop.conf.Configuration;
 5 import org.apache.hadoop.fs.Path;
 6 import org.apache.hadoop.io.LongWritable;
 7 import org.apache.hadoop.io.Text;
 8 import org.apache.hadoop.mapreduce.Job;
 9 import org.apache.hadoop.mapreduce.Mapper;
10 import org.apache.hadoop.mapreduce.Reducer;
11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12 import org.apache.hadoop.mapreduce.lib.input.FileSplit;
13 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
14 import org.apache.hadoop.util.GenericOptionsParser;
15 
16 
17 public class InvertedIndex {
18 
19     public static class Map extends Mapper<LongWritable, Text, Text, Text>{
20         private static Text word = new Text();
21         private static Text one = new Text();
22         
23         @Override
24         protected void map(LongWritable key, Text value,Mapper<LongWritable, Text, Text, Text>.Context context)
25                 throws IOException, InterruptedException {
26             //  super.map(key, value, context);
27             String fileName = ((FileSplit)context.getInputSplit()).getPath().getName();
28             StringTokenizer st = new StringTokenizer(value.toString());
29             while (st.hasMoreTokens()) {
30                 word.set(st.nextToken()+"\t"+fileName);
31                 context.write(word, one);
32             }
33         }
34     }
35     
36     public static class Combine extends Reducer<Text, Text, Text, Text>{
37         private static Text word = new Text();
38         private static Text index = new Text();
39         
40         @Override
41         protected void reduce(Text key, Iterable<Text> values,Reducer<Text, Text, Text, Text>.Context context)
42                 throws IOException, InterruptedException {
43             //  super.reduce(arg0, arg1, arg2);
44             String[] splits = key.toString().split("\t");
45             if (splits.length != 2) {
46                 return ;
47             }
48             long count = 0;
49             for(Text v:values){
50                 count++;
51             }
52             word.set(splits[0]);
53             index.set(splits[1]+":"+count);
54             context.write(word, index);
55         }
56     }
57     
58     public static class Reduce extends Reducer<Text, Text, Text, Text>{
59         private static StringBuilder sub = new StringBuilder(256);
60         private static Text index = new Text();
61         
62         @Override
63         protected void reduce(Text word, Iterable<Text> values,Reducer<Text, Text, Text, Text>.Context context)
64                 throws IOException, InterruptedException {
65             // super.reduce(arg0, arg1, arg2);
66             for(Text v:values){
67                 sub.append(v.toString()).append(";");
68             }
69             index.set(sub.toString());
70             context.write(word, index);
71             sub.delete(0, sub.length());
72         }
73     }
74     
75     public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
76         Configuration conf = new Configuration();
77         String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
78         if(otherArgs.length!=2){
79             System.out.println("Usage:wordcount <in> <out>");
80             System.exit(2);
81         }
82         Job job = new Job(conf,"Invert Index ");
83         job.setJarByClass(InvertedIndex.class);
84         
85         job.setMapperClass(Map.class);
86         job.setCombinerClass(Combine.class);
87         job.setReducerClass(Reduce.class);
88         
89         job.setMapOutputKeyClass(Text.class);
90         job.setMapOutputValueClass(Text.class);
91         job.setOutputKeyClass(Text.class);
92         job.setOutputValueClass(Text.class);
93         
94         FileInputFormat.addInputPath(job,new Path(args[0]));
95         FileOutputFormat.setOutputPath(job, new Path(args[1]));
96         System.exit(job.waitForCompletion(true)?0:1);
97     }
98 
99 }

 

转载于:https://www.cnblogs.com/xiaoyh/p/9361356.html

Hadoop 倒排索引-编程知识网创作挑战赛新人创作奖励来咯,坚持创作打卡瓜分现金大奖