昨天看到一本将数字图像处理模式识别技术的书,其中有一个例子是用C++写的软件,用于自动检测图片中的车牌并将其以文本输出。这一软件可以用于交通管理的监控中,如果可靠性能够达到要求的话捕捉车辆闯红灯的照片后自动检测车牌号会有很大的用途。昨晚做了个梦就是关于它的。我梦到我的毕业论文是一片关于模式识别技术的文章(这个说的也太早了)。

      模式识别技术在现实中已经有了很多应用,比如指纹识别,DC和PC的人脸识别,手机的声控命令等不胜枚举,其在未来的发展不可限量。

      另外,几年前看过一则新闻报道日本一家IT公司发明了一款软件用于department store,摄像头拍取每个一进入store的顾客面部照片,然后软件自动根据顾客的面部特征将每个顾客划分为不同的年龄层,最后统计的结果将有益于 store根据不同年龄层顾客的需求对商品做出调整。

      模式识别技术广泛用于AI,而且是AI的基础,模式识别技术包括1.语音识别技术,2.生物认证技术,3声音识别技术,4,指纹识别技术,5,数字水印技术。

      在人工智能技术(Artificial Intelligence)领域中,模式识别(Pattern Recognition)技术也许是最具有挑战性的一门技术了,模式识别有时又被称为分类技术,因为模式识别说到底就是对数据进行分类。说到识别,最为常用的便是模仿人的视觉的图像识别(当然还有语音识别),也许你会想当然地认为那还不简单,觉得我们用我们的眼睛可以轻而易举地识别出各种事物,但是当你想用计算机中的程序来实现它时,于是你便会觉得很沮丧,甚至于有无从下手的感觉,至此你再也不会觉得电脑有多聪明,你会觉得电脑是多么的低能。是的,现在的电脑智能,即人工智能还远不如蟑螂的智能,这其中最为根本的原因是模式识别技术还是处于较为低层次的发展阶段,很多的识别技术还无法突破,甚至有人还断言,再过30年也不会有本质的飞跃。当然,世事总是让人难以预料,我们也用不着这么地悲观,科学技术总是向前发展的,没有人可以阻档得了的。在这里,我把我对模式识别技术的学习和研究心得拿出来与大家分享一下,我唯一的目的是想让模式识别技术走下技术的神坛,让每个人都能够去了解它,更是想让更多的人有兴趣去研究它,我的知识和能力有限,这样也许还能够帮助我改正我的错误认识。

      模式识别具有较长的历史,在20世纪60年代以前,模式识别主要是限于统计学领域中的理论研究,还无法有较强的数学理论支持,20世纪80年代神经网络等识别技术得到了突破,计算机硬件技术更是有了长足的发展,模式识别技术便得到了较为广泛的应用,光学字符识别(OCR)是模式识别技术最早得到成功应用的技术,之后的应用还有如DNA序列分析、化学气味识别、图像理解力、人脸检测、表情识别、手势识别、语音识别、图像信息检索、数据挖掘等。

      模式识别是一门与数学结合非常紧密的科学,所应用到的数学知识非常多,最基本的便是概率论和数理统计了,模式识别技术到处都充满了概率和统计的思想,我们经常所说的识别率,其实就是概率的表达:在大数据量(严格地说应当是数据量无穷大)测试中识别成功的概率,还有常用的贝叶斯决策分类器便是运用了概率公式。模式识别还用到了线性代数,因为运用线性代数可以较为方便表达具有多特征的事物,我们一般会用向量来表达一个事物的特征,对于向量的计算是一定会用到线性代数的知识的。还有一个较为高层次的数学知识是泛函分析,泛函分析是研究无限维线性空间上的泛函数和算子理论,SVM(支持向量机)便是以泛函分析中的理论为基础的,SVM技术还运用到了最优化理论数学知识,最近中科院王守觉院士提出的多维空间仿生模式识别技术是以拓扑学为理论基础的。所以说模式识别科学是应用到数学知识最多的一门学科之一,在我们研究模式识别技术过程中会碰到一个又一个的数学知识,有时需要我们重新拿起读大学时的数学书来学习,有时还需要我们去寻找和学习我们也许从未学习过的数学知识,这时你会感觉到你真的是在做研究,仿佛又回到了大学学习时光,你更会感觉到要学好模式识别技术需要多年的积累,浮躁不得,当然,如果你越是坚持下来,你的价值就会越大,因为这是个可以不断得到积累的技术,不象研究上层应用,研究多年并不意味着你就会有多厉害,一下子没有跟进便会被淘汰掉,而后面进来研究的人很容易超越前面研究的人,所以说,模式识别技术是一个喜欢做研究的人的一个很好的选择。

作者:root@linux    版权归原作者所有
如若复制、转载请注明原文地址:
http://mtoou.info/moshishibie/