深入Bert实战(Pytorch)—-fine-Tuning 2
https://www.bilibili.com/video/BV1K5411t7MD?p=5
https://www.youtube.com/channel/UCoRX98PLOsaN8PtekB9kWrw/videos
深入BERT实战(PyTorch) by ChrisMcCormickAI
这是ChrisMcCormickAI在油管bert,8集系列第三篇fine-Tuning的pytorch的讲解的代码,在油管视频下有cloab地址,如果不能翻墙的可以留下邮箱我全部看完整理后发给你。但是在fine-tuning最好还是在cloab上运行
文章目录
- 深入Bert实战(Pytorch)—-fine-Tuning 2
- 4. Train Our Classification Model
-
- 4.1. BertForSequenceClassification
- 4.2. Optimizer & Learning Rate Scheduler
- 4.3. 循环训练
- 5. 在测试集上的表现
-
- 5.1. 数据准备
- 5.2. 在测试集上评估
- 总结
- 附录
-
- A1. Saving & Loading Fine-Tuned Model
- Revision History
4. Train Our Classification Model
4.1. BertForSequenceClassification
对于这个任务,我们首先要修改预训练的BERT模型以给出分类输出,然后在自己的数据集上继续训练模型,直到整个模型(端到端的模型)非常适合自己的任务。
值得庆幸的是,huggingface pytorch实现包含一组为各种NLP任务设计的接口。尽管这些接口都建立在训练好的BERT模型之上,但每个接口都有不同的顶层和输出类型,以适应它们特定的NLP任务。
这里是目前提供的fine-tuning列表
- BertModel
- BertForPreTraining
- BertForMaskedLM
- BertForNextSentencePrediction
- BertForSequenceClassification – The one we’ll use.
- BertForTokenClassification
- BertForQuestionAnswering
这里是transformer的文档here.
我们使用BertForSequenceClassification。这是普通的BERT模型,上面添加了一个用于分类的线性层,我们将使用它作为句子分类器。当我们输入数据时,整个预训练的BERT模型和额外的未训练的分类层是同时在这个任务上进行训练
好的,现在加载BERT!这里有几种不同的预训练模型,"bert-base-uncased"版本,仅有小写字母(“uncased”)相比于是较小的(“base” vs “large”)。
预训练的文档在from_pretrained
here 定义了其它参数 here
from transformers import BertForSequenceClassification, AdamW, BertConfig# Load BertForSequenceClassification, the pretrained BERT model with a single
# linear classification layer on top.
# 加载BertForSequenceClassification,预训练的模型+顶层单层线性分类层
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab.num_labels = 2, # The number of output labels--2 for binary classification.# You can increase this for multi-class tasks.# 2分类问题,可以增加为多分类问题output_attentions = False, # Whether the model returns attentions weights.output_hidden_states = False, # Whether the model returns all hidden-states.
)# Tell pytorch to run this model on the GPU.
model.cuda()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
出于好奇,我们可以在这里按名称浏览所有的模型参数。
在下面的单元格中,我打印出了以下权重的名称和尺寸:
这里作者打印了所有层,总共有201层,也打印了权重和大小
- The embedding layer.
- The first of the twelve transformers.
- The output layer.
# Get all of the model's parameters as a list of tuples.
params = list(model.named_parameters())print('The BERT model has {:} different named parameters.\n'.format(len(params)))print('==== Embedding Layer ====\n')for p in params[0:5]:print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))print('\n==== First Transformer ====\n')for p in params[5:21]:print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))print('\n==== Output Layer ====\n')for p in params[-4:]:print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
The BERT model has 201 different named parameters.==== Embedding Layer ====bert.embeddings.word_embeddings.weight (30522, 768)
bert.embeddings.position_embeddings.weight (512, 768)
bert.embeddings.token_type_embeddings.weight (2, 768)
bert.embeddings.LayerNorm.weight (768,)
bert.embeddings.LayerNorm.bias (768,)==== First Transformer ====bert.encoder.layer.0.attention.self.query.weight (768, 768)
bert.encoder.layer.0.attention.self.query.bias (768,)
bert.encoder.layer.0.attention.self.key.weight (768, 768)
bert.encoder.layer.0.attention.self.key.bias (768,)
bert.encoder.layer.0.attention.self.value.weight (768, 768)
bert.encoder.layer.0.attention.self.value.bias (768,)
bert.encoder.layer.0.attention.output.dense.weight (768, 768)
bert.encoder.layer.0.attention.output.dense.bias (768,)
bert.encoder.layer.0.attention.output.LayerNorm.weight (768,)
bert.encoder.layer.0.attention.output.LayerNorm.bias (768,)
bert.encoder.layer.0.intermediate.dense.weight (3072, 768)
bert.encoder.layer.0.intermediate.dense.bias (3072,)
bert.encoder.layer.0.output.dense.weight (768, 3072)
bert.encoder.layer.0.output.dense.bias (768,)
bert.encoder.layer.0.output.LayerNorm.weight (768,)
bert.encoder.layer.0.output.LayerNorm.bias (768,)==== Output Layer ====bert.pooler.dense.weight (768, 768)
bert.pooler.dense.bias (768,)
classifier.weight (2, 768)
classifier.bias (2,)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
4.2. Optimizer & Learning Rate Scheduler
现在我们已经加载了模型,我们需要从存储的模型中获取训练超参数。
为了进行微调,作者建议从以下值中进行选择。(从论文的注释 BERT paper):
- Batch size: 16, 32
- Learning rate (Adam): 5e-5, 3e-5, 2e-5
- Number of epochs: 2, 3, 4
作者选择的参数是:
- Batch size: 32 (set when creating our DataLoaders)
- Learning rate: 2e-5
- Epochs: 4 (we’ll see that this is probably too many…)
参数eps = 1e-8
是"a very small number to prevent any division by zero in the implementation"(from here)
您可以在run_glue.py中找到创建AdamW优化器的方法here.
# Note: AdamW is a class from the huggingface library (as opposed to pytorch)
# AdamW是huggingface实现的类
# I believe the 'W' stands for 'Weight Decay fix"
optimizer = AdamW(model.parameters(),lr = 2e-5, # args.learning_rate - default is 5e-5, our notebook had 2e-5eps = 1e-8 # args.adam_epsilon - default is 1e-8.)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
from transformers import get_linear_schedule_with_warmup# Number of training epochs. The BERT authors recommend between 2 and 4.
# We chose to run for 4, but we'll see later that this may be over-fitting the
# training data.
epochs = 4# Total number of training steps is [number of batches] x [number of epochs].
# (Note that this is not the same as the number of training samples).
total_steps = len(train_dataloader) * epochs # 总共4 * 241批# Create the learning rate scheduler.
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 0, # Default value in run_glue.pynum_training_steps = total_steps)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
4.3. 循环训练
下面是我们的训练循环。有很多事情要做,但从根本上来说,对于循环中的每一个过程,我们都有一个training阶段和一个validation阶段。
Thank you to Stas Bekman for contributing the insights and code for using validation loss to detect over-fitting!
Training:
- 打开我们的数据 inputs 和 labels
- 加载数据到GPU上
- 清除之前计算的梯度。
- 在pytorch中,除非显式清除梯度,否则梯度默认累积(对于rnn之类的东西很有用)。
- Forward pass(通过网络输入数据)
- Backward pass 反向传播
- 告诉网络使用optimizer.step()更新参数
- 监控进度,跟踪变量
Evalution:
- 同训练过程一样,打开inputs 和 labels
- 加载数据到GPU上
- Forward pass(通过网络输入数据)
- 计算我们验证数据的损失,监控进度,跟踪变量
Pytorch向我们隐藏了所有详细的计算,但是我们已经对代码进行了注释,指出了每一行上发生的上述步骤。
定义一个计算精度的辅助函数。
import numpy as np# Function to calculate the accuracy of our predictions vs labels
# 这个函数来计算预测值和labels的准确度
def flat_accuracy(preds, labels):pred_flat = np.argmax(preds, axis=1).flatten() # 取出最大值对应的索引labels_flat = labels.flatten()return np.sum(pred_flat == labels_flat) / len(labels_flat)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
格式化函数时间
import time
import datetimedef format_time(elapsed):'''Takes a time in seconds and returns a string hh:mm:ss'''# Round to the nearest second. 四舍五入elapsed_rounded = int(round((elapsed)))# Format as hh:mm:ssreturn str(datetime.timedelta(seconds=elapsed_rounded))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
现在开始训练,这里要修改一部分代码,作者给的代码有个地方要做修改,参考run_glue.py
import random
import numpy as np# This training code is based on the `run_glue.py` script here:
# https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128# Set the seed value all over the place to make this reproducible. 保证可重复性
seed_val = 42random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)# We'll store a number of quantities(保存如) such as training and validation loss,
# validation accuracy, and timings.(训练loss, 验证loss, 验证准确率,训练时间)
training_stats = []# Measure the total training time for the whole run. 总训练时间
total_t0 = time.time()# For each epoch...
for epoch_i in range(0, epochs):# ========================================# Training# ========================================# 对训练集进行一次完整的测试。print("")print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))print('Training...')# Measure how long the training epoch takes.t0 = time.time()# Reset the total loss for this epoch.total_train_loss = 0# Put the model into training mode. Don't be mislead--the call to # `train` just changes the *mode*, it doesn't *perform* the training.# 这里并不是执行的训练,而是,实例化启用 BatchNormalization 和 Dropout# `dropout` and `batchnorm` layers behave differently during training# vs. test (source: https://stackoverflow.com/questions/51433378/what-does-model-train-do-in-pytorch)model.train()# For each batch of training data...for step, batch in enumerate(train_dataloader): # 共241个batches# Progress update every 40 batches. 40步打印一次if step % 40 == 0 and not step == 0:# Calculate elapsed time in minutes.elapsed = format_time(time.time() - t0)# Report progress.print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))# 例: Batch 40 of 241. Elapsed: 0:00:08.# `batch` contains three pytorch tensors:# [0]: input ids # [1]: attention masks# [2]: labels # 第一步的打开数据, 第二步 将数据放到GPU `to`方法b_input_ids = batch[0].to(device)b_input_mask = batch[1].to(device)b_labels = batch[2].to(device)# 在执行 backward pass 之前,始终清除任何先前计算的梯度。# PyTorch不会自动这样做,因为累积梯度“在训练rnn时很方便”。# (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)model.zero_grad() # 第三步,梯度清零 # 执行 forward pass (在此训练批次上对模型进行评估).# The documentation for this `model` function is here: # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification# 它根据给定的参数和设置的标志返回不同数量的形参。# it returns the loss (because we provided labels) and the "logits"--the model outputs prior to activation.# 返回loss和"logits"--激活之前的模型输出。 model = BertForSequenceClassificationoutput = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)# 将所有批次的训练损失累积起来,这样我们就可以在最后计算平均损失。 # `loss` 是一个单个值的tensor; the `.item()` 函数将它转为一个python numberloss, logits = output[:2]total_train_loss += loss.item()# 执行反向传播计算精度.loss.backward()# Clip the norm of the gradients to 1.0.# 梯度裁剪,防止梯度爆炸torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)# Update parameters and take a step using the computed gradient.# 更新参数,计算梯度# 优化器规定“update rule”——参数如何根据梯度、学习速率等进行修改。optimizer.step()# 更新学习率scheduler.step()# 计算平均lossavg_train_loss = total_train_loss / len(train_dataloader) # 训练时间training_time = format_time(time.time() - t0)# 打印结果print("")print(" Average training loss: {0:.2f}".format(avg_train_loss))print(" Training epcoh took: {:}".format(training_time))# ========================================# Validation# ========================================# 在验证集查看print("")print("Running Validation...")t0 = time.time()# 将模型置于评估模式 不使用BatchNormalization()和Dropout()model.eval()# 跟踪变量total_eval_accuracy = 0total_eval_loss = 0nb_eval_steps = 0# 在每个epoch上评估for batch in validation_dataloader:# `batch` contains three pytorch tensors:# [0]: input ids # [1]: attention masks# [2]: labels b_input_ids = batch[0].to(device)b_input_mask = batch[1].to(device)b_labels = batch[2].to(device)# Tell pytorch not to bother with constructing the compute graph during# the forward pass, since this is only needed for backprop (training).with torch.no_grad(): # Forward pass, calculate logit predictions.# token_type_ids is the same as the "segment ids", which # differentiates sentence 1 and 2 in 2-sentence tasks.# The documentation for this `model` function is here: # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification# Get the "logits" output by the model. The "logits" are the output# values prior to applying an activation function like the softmax.(loss, logits) = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask,labels=b_labels)# 计算验证损失loss, logits = output[:2]total_eval_loss += loss.item()# Move logits and labels to CPUlogits = logits.detach().cpu().numpy()label_ids = b_labels.to('cpu').numpy()# Calculate the accuracy for this batch of test sentences, and# accumulate it over all batches.total_eval_accuracy += flat_accuracy(logits, label_ids)# 返回验证结果avg_val_accuracy = total_eval_accuracy / len(validation_dataloader)print(" Accuracy: {0:.2f}".format(avg_val_accuracy))# 计算平均复杂度avg_val_loss = total_eval_loss / len(validation_dataloader)# 时间validation_time = format_time(time.time() - t0)print(" Validation Loss: {0:.2f}".format(avg_val_loss))print(" Validation took: {:}".format(validation_time))# 记录这个epoch的所有统计数据。 方便后面可视化training_stats.append({'epoch': epoch_i + 1,'Training Loss': avg_train_loss,'Valid. Loss': avg_val_loss,'Valid. Accur.': avg_val_accuracy,'Training Time': training_time,'Validation Time': validation_time})print("")
print("Training complete!")print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
让我们来看看训练过程的总结。
import pandas as pd# 显示浮点数小数点后两位。
pd.set_option('precision', 2)# 从训练统计数据里,创建一个 DataFrame
df_stats = pd.DataFrame(data=training_stats)# 用'epoch'行坐标
df_stats = df_stats.set_index('epoch')# A hack to force the column headers to wrap.
#df = df.style.set_table_styles([dict(selector="th",props=[('max-width', '70px')])])# Display the table.
df_stats
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
Training Loss | Valid. Loss | Valid. Accur. | Training Time | Validation Time epoch |
---|---|---|---|---|
1 | 0.50 | 0.45 | 0.80 | 0:00:51 |
2 | 0.32 | 0.46 | 0.81 | 0:00:51 |
3 | 0.22 | 0.49 | 0.82 | 0:00:51 |
4 | 0.16 | 0.55 | 0.82 | 0:00:51 |
这里我跑这代码train loss没有下降,反而上升了,有了解这个问题的大大,麻烦请留言指教下
请注意,当训练损失随着时间的推移而下降时,验证损失却在增加!这表明我们训练模型的时间太长了,它对训练数据过于拟合。
(作为参考,我们使用了7,695个训练样本和856个验证样本)。
验证损失是比精度更精确的度量,因为有了精度,我们不关心确切的输出值,而只关心它落在阈值的哪一边。
如果我们预测的是正确的答案,但缺乏信心,那么验证损失将捕捉到这一点,而准确性则不会。
import matplotlib.pyplot as plt
% matplotlib inlineimport seaborn as sns# Use plot styling from seaborn.
sns.set(style='darkgrid')# Increase the plot size and font size.
sns.set(font_scale=1.5)
plt.rcParams["figure.figsize"] = (12,6)# 绘制学习曲线
plt.plot(df_stats['Training Loss'], 'b-o', label="Training")
plt.plot(df_stats['Valid. Loss'], 'g-o', label="Validation")# Label the plot.
plt.title("Training & Validation Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.xticks([1, 2, 3, 4])plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
5. 在测试集上的表现
现在,我们将加载holdout数据集并准备输入,就像我们对训练集所做的那样。然后,我们将使用Matthew’s correlation coefficient评估预测,因为这是更广泛的NLP社区用于评估CoLA性能的指标。在这个指标下,+1是最好的分数,-1是最差的分数。通过这种方式,我们可以看到针对这个特定任务的先进模型的性能如何。
5.1. 数据准备
我们需要应用与训练数据相同的所有步骤来准备测试数据集。
import pandas as pd# 加载数据
df = pd.read_csv("./cola_public/raw/out_of_domain_dev.tsv", delimiter='\t', header=None, names=['sentence_source', 'label', 'label_notes', 'sentence'])# 显示句子数量
print('Number of test sentences: {:,}\n'.format(df.shape[0]))# 创建句子和标签列表
sentences = df.sentence.values
labels = df.label.values# Tokenize
input_ids = []
attention_masks = []# For every sentence...
for sent in sentences:# `encode_plus` will:# (1) Tokenize the sentence.# (2) 添加 `[CLS]` token 到开始# (3) 添加 `[SEP]` token 到结束# (4) 映射tokens 到 IDs.# (5) 填充或截断句子到`max_length`# (6) Create attention masks for [PAD] tokens.encoded_dict = tokenizer.encode_plus(sent, # 对句子做encode.add_special_tokens = True, # Add '[CLS]' and '[SEP]'max_length = 64, # Pad & truncate all sentences.pad_to_max_length = True,return_attention_mask = True, # Construct attn. masks.return_tensors = 'pt', # Return pytorch tensors.)# 将已编码的句子添加到列表中。 input_ids.append(encoded_dict['input_ids'])# 以及它的注意力掩码(简单地区分填充和非填充)。attention_masks.append(encoded_dict['attention_mask'])# Convert the lists into tensors.
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
labels = torch.tensor(labels)# Set the batch size.
batch_size = 32 # Create the DataLoader.
prediction_data = TensorDataset(input_ids, attention_masks, labels)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
Number of test sentences: 516
5.2. 在测试集上评估
准备好测试集之后,我们可以应用我们的微调模型来生成测试集的预测。
# Prediction on test setprint('Predicting labels for {:,} test sentences...'.format(len(input_ids)))# 在测试模型
model.eval()# 跟踪变量
predictions , true_labels = [], []# Predict
for batch in prediction_dataloader:# Add batch to GPUbatch = tuple(t.to(device) for t in batch)# Unpack the inputs from our dataloaderb_input_ids, b_input_mask, b_labels = batch# 不让模型计算或存储梯度,节省内存和加速预测with torch.no_grad():# Forward pass, calculate logit predictionsoutputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)logits = outputs[0]# Move logits and labels to CPUlogits = logits.detach().cpu().numpy()label_ids = b_labels.to('cpu').numpy()# Store predictions and true labelspredictions.append(logits)true_labels.append(label_ids)print(' DONE.')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
CoLA基准的精度是用“Matthews correlation coefficient”来测量的。(MCC)。
我们在这里使用MCC是因为类是不平衡的:
print('Positive samples: %d of %d (%.2f%%)' % (df.label.sum(), len(df.label), (df.label.sum() / len(df.label) * 100.0)))
- 1
Positive samples: 354 of 516 (68.60%)
# 计算相关系数
from sklearn.metrics import matthews_corrcoefmatthews_set = []# 使用Matthew相关系数对每个测试批进行评估
print('Calculating Matthews Corr. Coef. for each batch...')# For each input batch...
for i in range(len(true_labels)):# 这个批处理的预测是一个2列的ndarray(一个列是“0”,一个列是“1”)。 # 选择值最高的label,并将其转换为0和1的列表。pred_labels_i = np.argmax(predictions[i], axis=1).flatten()# Calculate and store the coef for this batch. matthews = matthews_corrcoef(true_labels[i], pred_labels_i) matthews_set.append(matthews)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
最终的分数将基于整个测试集,但是让我们看一下单个批次的分数,以了解批次之间度量的可变性。
每批有32个句子,除了最后一批只有(516% 32)= 4个测试句子。
创建一个柱状图,显示每批测试样品的MCC分数。
ax = sns.barplot(x=list(range(len(matthews_set))), y=matthews_set, ci=None)plt.title('MCC Score per Batch')
plt.ylabel('MCC Score (-1 to +1)')
plt.xlabel('Batch #')plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
# 合并所有批次的结果。
flat_predictions = np.concatenate(predictions, axis=0)# 对于每个样本,选择得分较高的标签(0或1)。
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()# 将每个批次的正确标签组合成一个单独的列表。
flat_true_labels = np.concatenate(true_labels, axis=0)# Calculate the MCC
mcc = matthews_corrcoef(flat_true_labels, flat_predictions)print('Total MCC: %.3f' % mcc)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
在大约半个小时的时间里,我们没有做任何超参数的调整(learning rate, epochs, batch size, ADAM properties属性等),我们就获得了一个很好的分数。
为了使分数最大化,我们应该删除“验证集”(我们用来帮助确定要训练多少个纪元),并在整个训练集上训练。
库将基准测试此处的预期精度文档为“49.23”。
官方排行 here.
请注意(由于数据集的大小较小?)在不同的运行中,精度可能会有很大的变化。
总结
这篇文章演示了使用预先训练好的BERT模型,不管你感兴趣的是什么特定的NLP任务,你都可以使用pytorch接口,用最少的努力和训练时间,快速有效地创建一个高质量的模型。
附录
A1. Saving & Loading Fine-Tuned Model
(取自’ run_glue。py 'here)将模型和标记器写入磁盘。
import os# 保存best-practices:如果您使用模型的默认名称,您可以使用from_pretraining()重新加载它
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()output_dir = './model_save/'# 如果需要,创建输出目录
if not os.path.exists(output_dir):os.makedirs(output_dir)print("Saving model to %s" % output_dir)# 使用`save_pretrained()`保存训练过的模型、配置和标记器。
# 用`from_pretrained()`重新加载模型。
model_to_save = model.module if hasattr(model, 'module') else model # 注意distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)# Good practice: 保存训练好的模型于模型参数
# torch.save(args, os.path.join(output_dir, 'training_args.bin'))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
Revision History
Version 3 – Mar 18th, 2020 – (current)
- Simplified the tokenization and input formatting (for both training and test) by leveraging the
tokenizer.encode_plus
function.encode_plus
handles padding and creates the attention masks for us. - Improved explanation of attention masks.
- Switched to using
torch.utils.data.random_split
for creating the training-validation split. - Added a summary table of the training statistics (validation loss, time per epoch, etc.).
- Added validation loss to the learning curve plot, so we can see if we’re overfitting.
- Thank you to Stas Bekman for contributing this!
- Displayed the per-batch MCC as a bar plot.
Version 2 – Dec 20th, 2019 – link
- huggingface renamed their library to
transformers
. - Updated the notebook to use the
transformers
library.
Version 1 – July 22nd, 2019
- Initial version.