linux内核态和用户态(linux 内核态)-编程知识网

为什么内核态转发性能低?

现在很多人都在诟病Linux内核协议栈收包效率低,不管他们是真的懂还是一点都不懂只是听别人说的,反正就是在一味地怼Linux内核协议栈,他们的武器貌似只有DPDK。

但是,即便Linux内核协议栈收包效率真的很低,这是为什么?有没有办法去尝试着优化?而不是动不动就DPDK。

我们从最开始说起。

Linux内核作为一个通用操作系统内核,脱胎于UNIX那一套现代操作系统理论。

但一开始不知道怎么回事将网络协议栈的实现塞进了内核态,从此它就一直在内核态了。既然网络协议栈的处理在内核态进行,那么网络数据包必然是在内核态被处理的。无论如何,数据包要先进入内核态,这就涉及到了进入内核态的方式:

外部可以从两个方向进入内核-从用户态系统调用进入或者从硬件中断进入。

也就是说,系统在任意时刻,必然处在两个上下文中的一个:

进程上下文

中断上下文 (在非中断线程化的系统,也就是任意进程上下文)

收包逻辑的协议栈处理显然是自网卡而上的,它显然是在中断上下文中,而数据包往用户进程的数据接收处理,显然是在应用程序的进程上下文中, 数据包通过socket在两个上下文中被转接。

在socket层的数据包转接处,必然存在着一个队列缓存,这是一个典型的 生产者-消费者 模型,中断上下文的终点作为生产者将数据包入队,而进程上下文作为消费者从队列消费数据包

linux内核态和用户态的区别?

主要区别:是代码执行的层级;性能损失来源于缓冲区的复制。

首先内核态和用户态的堆和栈是不一样的,所以必然会发生寄存器状态的切换,其实单纯切换寄存器影响倒不是特别大,大概就是会影响 CPU 方面的一些比如指令流水,分支预测等

最大的问题是用户态程序发生系统调用相当于把控制权交给内核,内核甚至会剥夺当前进程的执行,去执行另一个进程,那这个时候要发生 TLB flush,这个对性能影响非常大不说,整个进程的执行都会停止

linux内核和系统的区别?

ubuntu系统和centos系统可能会使用同一个版本的linux内核。内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。

直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。

硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。

在unix/linux系统中,什么是用户态,什么是内核态?

用户态和内核态 内核栈:Linux中每个进程有两个栈,分别用于用户态和内核态的进程执行,其中的内核栈就是用于内核态的堆栈,它和进程的task_struct结构,更具体的是thread_info结构一起放在两个连续的页框大小的空间内。

现在我们从特权级的调度来理解用户态和内核态就比较好理解了,当程序运行在3级特权级上时,就可以称之为运行在用户态,因为这是最低特权级,是普通的用户进程运行的特权级,大部分用户直接面对的程序都是运行在用户态;反之,当程序运行在0级特权级上时,就可以称之为运行在内核态。 虽然用户态下和内核态下工作的程序有很多差别,但最重要的差别就在于特权级的不同,即权力的不同。

运行在用户态的程序不能访问操作系统内核数据结构合程序。

当我们在系统中执行一个程序时,大部分时间是运行在用户态下的。在其需要操作系统帮助完成某些它没有权力和能力完成的工作时就会切换到内核态。 Linux进程的4GB地址空间,3G-4G部分大家是共享的,是内核态的地址空间,这里存放在整个内核的代码和所有的内核模块,以及内核所维护的数据。

用户运行一个程序,该程序所创建的进程开始是运行在用户态的,如果要执行文件操作,网络数据发送等操作,必须通过write,send等系统调用,这些系统调用会调用内核中的代码来完成操作,这时,必须切换到Ring0,然后进入3GB-4GB中的内核地址空间去执行这些代码完成操作,完成后,切换回Ring3,回到用户态。

这样,用户态的程序就不能随意操作内核地址空间,具有一定的安全保护作用。

保护模式,通过内存页表操作等机制,保证进程间的地址空间不会互相冲突,一个进程的操作不会修改另一个进程的地址空间中的数据。在内核态下,CPU可执行任何指令,在用户态下CPU只能执行非特权指令。

当CPU处于内核态,可以随意进入用户态;而当CPU处于用户态,只能通过中断的方式进入内核态。

一般程序一开始都是运行于用户态,当程序需要使用系统资源时,就必须通过调用软中断进入内核态.