BL2的最后通过汇编调用了board_init_r函数,此时进入BL3的阶段,此时的主要工作:
这一阶段涉及的文件及任务如下
arch/arm/lib/board.c
1. board_init_r()是进入定制板目录的入口
common/main.c
2. main_loop()中关闭中断,执行命令以及加载引导内核
下面分析一下board_init_r函数:
/*************************************************************************** This is the next part if the initialization sequence: we are now* running from RAM and have a "normal" C environment, i. e. global* data can be written, BSS has been cleared, the stack size in not* that critical any more, etc.**************************************************************************/ void board_init_r(gd_t *id, ulong dest_addr) {...bd_t *bd;...gd = id;bd = gd->bd;gd->flags |= GD_FLG_RELOC; /* tell others: relocation done */monitor_flash_len = _end_ofs;...debug("monitor flash len: %08lX\n", monitor_flash_len);board_init(); /* Setup chipselects */
上述代码的作用是对gd和bd进行赋值,其中monitor_flash_len为整个U-Boot的长度。
malloc_start = dest_addr - TOTAL_MALLOC_LEN - sizeof(struct spare_boot_head_t); ... /* The Malloc area is immediately below the monitor copy in DRAM */mem_malloc_init (malloc_start, TOTAL_MALLOC_LEN);
对SDRAM中的malloc空间进行清零初始化。
#if !defined(CONFIG_SYS_NO_FLASH)puts("Flash: ");flash_size = flash_init();if (flash_size > 0) { # ifdef CONFIG_SYS_FLASH_CHECKSUMprint_size(flash_size, "");/** Compute and print flash CRC if flashchecksum is set to 'y'** NOTE: Maybe we should add some WATCHDOG_RESET()? XXX*/s = getenv("flashchecksum");if (s && (*s == 'y')) {printf(" CRC: %08X", crc32(0,(const unsigned char *) CONFIG_SYS_FLASH_BASE,flash_size));}putc('\n'); # else /* !CONFIG_SYS_FLASH_CHECKSUM */print_size(flash_size, "\n"); # endif /* CONFIG_SYS_FLASH_CHECKSUM */} else {puts(failed);hang();} #endif
上述代码的作用是计算FLASH的大小,并把它通过串口显示在控制台上。由于没有定义CONFIG_SYS_FLASH_CHECKSUM,所以没有执行CRC的校验和。其中flash_init函数是在drivers/mtd目录下的cfi_flash.c文件内(因为include/configs/smdk2410.h中定义了CONFIG_FLASH_CFI_DRIVER)。
/* set up exceptions */interrupt_init();/* enable exceptions */enable_interrupts();
interrupt_init函数是建立IRQ中断堆栈,enable_interrupts函数是使能IRQ中断,它们都是在arch/arm/lib目录下的interrupts.c文件中定义的。
... /* initialize environment */env_relocate();
初始化环境变量,由于gd->env_valid等于0,所以在这里设置的是缺省环境变量。env_relocate函数是在common目录下的env_common.c文件中定义的。
#if defined(CONFIG_CMD_PCI) || defined(CONFIG_PCI)arm_pci_init(); #endif
初始化PCI。
/* IP Address */gd->bd->bi_ip_addr = getenv_IPaddr("ipaddr");stdio_init(); /* get the devices list going. */jumptable_init(); #if defined(CONFIG_API)/* Initialize API */api_init(); #endifconsole_init_r(); /* fully init console as a device */
上面代码的作用分别对应:
设置IP地址。
初始化各类外设,如IIC、LCD、键盘、USB等,当然只有在定义了这些外设的前提下,才对这些外设进行初始化。该函数是在common目录下的stdio.c文件中定义的。
初始化跳转表gd->jt,该跳转表是一个函数指针数组,它定义了U-Boot中基本的常用函数库。该函数是在common目录下的exports.c文件中定义的。
初始化API。
初始化控制台,即标准输入、标准输出和标准错误,在这里都是串口。该函数是在common目录下的console.c文件中定义的。
/* Initialize from environment */s = getenv("loadaddr");if (s != NULL)load_addr = simple_strtoul(s, NULL, 16);
从环境变量中获取loadaddr参数,得到需要加载的地址。
#if defined(CONFIG_CMD_NET)s = getenv("bootfile");if (s != NULL)copy_filename(BootFile, s, sizeof(BootFile)); #endif
从环境变量中获取bootfile参数,得到通过TFTP加载的镜像文件名。
#if defined(CONFIG_CMD_NET) #if defined(CONFIG_NET_MULTI)puts("Net: "); #endifeth_initialize(gd->bd); #if defined(CONFIG_RESET_PHY_R)debug("Reset Ethernet PHY\n");reset_phy(); #endif #endif
初始化以太网,其中eth_initialize函数是在net目录下的eth.c文件中定义的。
.../* main_loop() can return to retry autoboot, if so just run it again. */for (;;){main_loop();}hang();/* NOTREACHED - no way out of command loop except booting */ }
board_init_r函数的最后就是执行一个死循环,调用main_loop函数。该函数是在common目录下的main.c文件内定义的。
总结:
3.接下来分析main_loop函数:
void main_loop (void) { #ifndef CONFIG_SYS_HUSH_PARSERstatic char lastcommand[CONFIG_SYS_CBSIZE] = { 0, };int len;int rc = 1;int flag; #endif
声明一些hush参数。关于hush后面会讲到。
#if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)char *s;int bootdelay; #endif
声明启动延时需要的参数。
#ifdef CONFIG_SYS_HUSH_PARSERu_boot_hush_start (); #endif
初始化hush功能。稍后再说。
1 #if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)2 s = getenv ("bootdelay");3 bootdelay = s ? (int)simple_strtol(s, NULL, 10) : CONFIG_BOOTDELAY;4 5 debug ("### main_loop entered: bootdelay=%d\n\n", bootdelay);6 7 # ifdef CONFIG_BOOT_RETRY_TIME8 init_cmd_timeout ();9 # endif /* CONFIG_BOOT_RETRY_TIME */ 10 11 #ifdef CONFIG_POST 12 if (gd->flags & GD_FLG_POSTFAIL) { 13 s = getenv("failbootcmd"); 14 } 15 else 16 #endif /* CONFIG_POST */ 17 #ifdef CONFIG_BOOTCOUNT_LIMIT 18 if (bootlimit && (bootcount > bootlimit)) { 19 printf ("Warning: Bootlimit (%u) exceeded. Using altbootcmd.\n", 20 (unsigned)bootlimit); 21 s = getenv ("altbootcmd"); 22 } 23 else 24 #endif /* CONFIG_BOOTCOUNT_LIMIT */ 25 s = getenv ("bootcmd"); 26 27 debug ("### main_loop: bootcmd=\"%s\"\n", s ? s : "<UNDEFINED>"); 28 29 if (bootdelay >= 0 && s && !abortboot (bootdelay)) { 30 # ifdef CONFIG_AUTOBOOT_KEYED 31 int prev = disable_ctrlc(1); /* disable Control C checking */ 32 # endif 33 34 # ifndef CONFIG_SYS_HUSH_PARSER 35 run_command (s, 0); 36 # else 37 parse_string_outer(s, FLAG_PARSE_SEMICOLON | 38 FLAG_EXIT_FROM_LOOP); 39 # endif 40 41 # ifdef CONFIG_AUTOBOOT_KEYED 42 disable_ctrlc(prev); /* restore Control C checking */ 43 # endif 44 } 45 46 # ifdef CONFIG_MENUKEY 47 if (menukey == CONFIG_MENUKEY) { 48 s = getenv("menucmd"); 49 if (s) { 50 # ifndef CONFIG_SYS_HUSH_PARSER 51 run_command(s, 0); 52 # else 53 parse_string_outer(s, FLAG_PARSE_SEMICOLON | 54 FLAG_EXIT_FROM_LOOP); 55 # endif 56 } 57 } 58 #endif /* CONFIG_MENUKEY */ 59 #endif /* CONFIG_BOOTDELAY */
第2行和第3行的含义是从环境变量中获取bootdelay参数,得到自动启动缺省镜像文件的延时(单位是秒)。
其中bootdelay的作用是:uboot正常启动后,会调用main_loop(void)函数,进入main_loop()之后,如果在规定的时间(CONFIG_BOOTDELAY)内,没有检查到任何按键事件的发生,就会去加载OS,并启动系统。
第8行的含义是初始化命令行超时机制。
第25行的含义是从环境变量中获取bootcmd参数,得到在启动延时过程中自动执行的命令。当我们得到了bootcmd参数,bootdelay参数也是大于等于0,并且在启动延时过程中没有按下任意键时,执行第37行的parse_string_outer函数,该函数的作用是解释bootcmd参数
并执行,它是在common目录下的hush.c文件内定义的。
1 /*2 * Main Loop for Monitor Command Processing3 */4 #ifdef CONFIG_SYS_HUSH_PARSER5 parse_file_outer();6 /* This point is never reached */7 for (;;);8 #else9 for (;;) { 10 #ifdef CONFIG_BOOT_RETRY_TIME 11 if (rc >= 0) { 12 /* Saw enough of a valid command to 13 * restart the timeout. 14 */ 15 reset_cmd_timeout(); 16 } 17 #endif 18 len = readline (CONFIG_SYS_PROMPT); 19 20 flag = 0; /* assume no special flags for now */ 21 if (len > 0) 22 strcpy (lastcommand, console_buffer); 23 else if (len == 0) 24 flag |= CMD_FLAG_REPEAT; 25 #ifdef CONFIG_BOOT_RETRY_TIME 26 else if (len == -2) { 27 /* -2 means timed out, retry autoboot 28 */ 29 puts ("\nTimed out waiting for command\n"); 30 # ifdef CONFIG_RESET_TO_RETRY 31 /* Reinit board to run initialization code again */ 32 do_reset (NULL, 0, 0, NULL); 33 # else 34 return; /* retry autoboot */ 35 # endif 36 } 37 #endif 38 39 if (len == -1) 40 puts ("<INTERRUPT>\n"); 41 else 42 rc = run_command (lastcommand, flag); 43 44 if (rc <= 0) { 45 /* invalid command or not repeatable, forget it */ 46 lastcommand[0] = 0; 47 } 48 } 49 #endif /*CONFIG_SYS_HUSH_PARSER*/ 50 }
由于在include/configs/smdk2410.h文件中定义了CONFIG_SYS_HUSH_PARSER,所以上面的代码仅仅执行的是第5行至第7行的内容。第5行的parse_file_outer函数是在common目录下的hush.c文件中定义的,它的含义是依次读取命令序列中的命令并执行之,其中在该
函数还调用了parse_stream_outer函数,这个函数体内有一个do-while循环,只有发生语法错误的时候才会跳出该循环,因此一般情况下永远也不会执行上面代码中的第7行内容,而是始终在那个do-while循环体内。
上面说到过如果在CONFIG_BOOTDELAY时间内,用户按下键盘上的任意一个按键,uboot就会进入与用户交互的状态。如果用户在配置文件中定义了CONFIG_SYS_HUSH_PARSER,就会通过parse_file_outer(),去接收并解析用户命令,否则进入一个for(;;)循环,
通过 readline (CONFIG_SYS_PROMPT)接收用户命令,然后调用run_command(cmd,flag)去解析并执行命令。
当在配置文件中定义了CONFIG_SYS_HUSH_PARSER,main_loop会调用parse_file_outer(),进入hush中。其中parse_file_outer()在u-boot\common\hush.c下。
#ifndef __U_BOOT__ static int parse_file_outer(FILE *f) #else int parse_file_outer(void) #endif {int rcode;struct in_str input; #ifndef __U_BOOT__setup_file_in_str(&input, f); #elsesetup_file_in_str(&input); #endifrcode = parse_stream_outer(&input, FLAG_PARSE_SEMICOLON);return rcode; }
/* most recursion does not come through here, the exeception is* from builtin_source() */ int parse_stream_outer(struct in_str *inp, int flag) {struct p_context ctx;o_string temp=NULL_O_STRING;int rcode; #ifdef __U_BOOT__int code = 0; #endifdo {ctx.type = flag;initialize_context(&ctx);update_ifs_map();if (!(flag & FLAG_PARSE_SEMICOLON) || (flag & FLAG_REPARSING)) mapset((uchar *)";$&|", 0);inp->promptmode=1;rcode = parse_stream(&temp, &ctx, inp, '\n'); #ifdef __U_BOOT__if (rcode == 1) flag_repeat = 0; #endifif (rcode != 1 && ctx.old_flag != 0) {syntax(); #ifdef __U_BOOT__flag_repeat = 0; #endif}if (rcode != 1 && ctx.old_flag == 0) {done_word(&temp, &ctx);done_pipe(&ctx,PIPE_SEQ); #ifndef __U_BOOT__run_list(ctx.list_head); #elsecode = run_list(ctx.list_head);if (code == -2) { /* exit */b_free(&temp);code = 0;/* XXX hackish way to not allow exit from main loop */if (inp->peek == file_peek) {printf("exit not allowed from main input shell.\n");continue;}break;}if (code == -1)flag_repeat = 0; #endif} else {if (ctx.old_flag != 0) {free(ctx.stack);b_reset(&temp);} #ifdef __U_BOOT__if (inp->__promptme == 0) printf("<INTERRUPT>\n");inp->__promptme = 1; #endiftemp.nonnull = 0;temp.quote = 0;inp->p = NULL;free_pipe_list(ctx.list_head,0);}b_free(&temp);} while (rcode != -1 && !(flag & FLAG_EXIT_FROM_LOOP)); /* loop on syntax errors, return on EOF */ #ifndef __U_BOOT__return 0; #elsereturn (code != 0) ? 1 : 0; #endif /* __U_BOOT__ */ }
hush是uboot中命令接收和解析的工具,与uboot原始的命令解析方法相比,该工具更加智能。
这里会在run_list中调用到hush中的run_pipe_real(struct pipe *pi),在该函数中经过一些列解析,最终会调用到对应的命令执行函数。
/* run_pipe_real() starts all the jobs, but doesn't wait for anything* to finish. See checkjobs().** return code is normally -1, when the caller has to wait for children* to finish to determine the exit status of the pipe. If the pipe* is a simple builtin command, however, the action is done by the* time run_pipe_real returns, and the exit code is provided as the* return value.** The input of the pipe is always stdin, the output is always* stdout. The outpipe[] mechanism in BusyBox-0.48 lash is bogus,* because it tries to avoid running the command substitution in* subshell, when that is in fact necessary. The subshell process* now has its stdout directed to the input of the appropriate pipe,* so this routine is noticeably simpler.*/ static int run_pipe_real(struct pipe *pi) {int i; #ifndef __U_BOOT__int nextin, nextout;int pipefds[2]; /* pipefds[0] is for reading */struct child_prog *child;struct built_in_command *x;char *p; # if __GNUC__/* Avoid longjmp clobbering */(void) &i;(void) &nextin;(void) &nextout;(void) &child; # endif #elseint nextin;int flag = do_repeat ? CMD_FLAG_REPEAT : 0;struct child_prog *child;cmd_tbl_t *cmdtp;char *p; # if __GNUC__/* Avoid longjmp clobbering */(void) &i;(void) &nextin;(void) &child; # endif #endif /* __U_BOOT__ */nextin = 0; #ifndef __U_BOOT__pi->pgrp = -1; #endif/* Check if this is a simple builtin (not part of a pipe).* Builtins within pipes have to fork anyway, and are handled in* pseudo_exec. "echo foo | read bar" doesn't work on bash, either.*/if (pi->num_progs == 1) child = & (pi->progs[0]); #ifndef __U_BOOT__if (pi->num_progs == 1 && child->group && child->subshell == 0) {int squirrel[] = {-1, -1, -1};int rcode;debug_printf("non-subshell grouping\n");setup_redirects(child, squirrel);/* XXX could we merge code with following builtin case,* by creating a pseudo builtin that calls run_list_real? */rcode = run_list_real(child->group);restore_redirects(squirrel); #elseif (pi->num_progs == 1 && child->group) {int rcode;debug_printf("non-subshell grouping\n");rcode = run_list_real(child->group); #endifreturn rcode;} else if (pi->num_progs == 1 && pi->progs[0].argv != NULL) {for (i=0; is_assignment(child->argv[i]); i++) { /* nothing */ }if (i!=0 && child->argv[i]==NULL) {/* assignments, but no command: set the local environment */for (i=0; child->argv[i]!=NULL; i++) {/* Ok, this case is tricky. We have to decide if this is a* local variable, or an already exported variable. If it is* already exported, we have to export the new value. If it is* not exported, we need only set this as a local variable.* This junk is all to decide whether or not to export this* variable. */int export_me=0;char *name, *value;name = xstrdup(child->argv[i]);debug_printf("Local environment set: %s\n", name);value = strchr(name, '=');if (value)*value=0; #ifndef __U_BOOT__if ( get_local_var(name)) {export_me=1;} #endiffree(name);p = insert_var_value(child->argv[i]);set_local_var(p, export_me);if (p != child->argv[i]) free(p);}return EXIT_SUCCESS; /* don't worry about errors in set_local_var() yet */}for (i = 0; is_assignment(child->argv[i]); i++) {p = insert_var_value(child->argv[i]); #ifndef __U_BOOT__putenv(strdup(p)); #elseset_local_var(p, 0); #endifif (p != child->argv[i]) {child->sp--;free(p);}}if (child->sp) {char * str = NULL;str = make_string((child->argv + i));parse_string_outer(str, FLAG_EXIT_FROM_LOOP | FLAG_REPARSING);free(str);return last_return_code;} #ifndef __U_BOOT__for (x = bltins; x->cmd; x++) {if (strcmp(child->argv[i], x->cmd) == 0 ) {int squirrel[] = {-1, -1, -1};int rcode;if (x->function == builtin_exec && child->argv[i+1]==NULL) {debug_printf("magic exec\n");setup_redirects(child,NULL);return EXIT_SUCCESS;}debug_printf("builtin inline %s\n", child->argv[0]);/* XXX setup_redirects acts on file descriptors, not FILEs.* This is perfect for work that comes after exec().* Is it really safe for inline use? Experimentally,* things seem to work with glibc. */setup_redirects(child, squirrel); #else/* check ";", because ,example , argv consist from* "help;flinfo" must not execute*/if (strchr(child->argv[i], ';')) {printf ("Unknown command '%s' - try 'help' or use 'run' command\n",child->argv[i]);return -1;}/* Look up command in command table */if ((cmdtp = find_cmd(child->argv[i])) == NULL) {printf ("Unknown command '%s' - try 'help'\n", child->argv[i]);return -1; /* give up after bad command */} else {int rcode; #if defined(CONFIG_CMD_BOOTD)/* avoid "bootd" recursion */if (cmdtp->cmd == do_bootd) {if (flag & CMD_FLAG_BOOTD) {printf ("'bootd' recursion detected\n");return -1;}elseflag |= CMD_FLAG_BOOTD;} #endif/* found - check max args */if ((child->argc - i) > cmdtp->maxargs)return cmd_usage(cmdtp); #endifchild->argv+=i; /* XXX horrible hack */ #ifndef __U_BOOT__rcode = x->function(child); #else/* OK - call function to do the command */rcode = (cmdtp->cmd) (cmdtp, flag,child->argc-i,&child->argv[i]);if ( !cmdtp->repeatable )flag_repeat = 0;#endifchild->argv-=i; /* XXX restore hack so free() can work right */ #ifndef __U_BOOT__restore_redirects(squirrel); #endifreturn rcode;}} #ifndef __U_BOOT__}for (i = 0; i < pi->num_progs; i++) {child = & (pi->progs[i]);/* pipes are inserted between pairs of commands */if ((i + 1) < pi->num_progs) {if (pipe(pipefds)<0) perror_msg_and_die("pipe");nextout = pipefds[1];} else {nextout=1;pipefds[0] = -1;}/* XXX test for failed fork()? */if (!(child->pid = fork())) {/* Set the handling for job control signals back to the default. */signal(SIGINT, SIG_DFL);signal(SIGQUIT, SIG_DFL);signal(SIGTERM, SIG_DFL);signal(SIGTSTP, SIG_DFL);signal(SIGTTIN, SIG_DFL);signal(SIGTTOU, SIG_DFL);signal(SIGCHLD, SIG_DFL);close_all();if (nextin != 0) {dup2(nextin, 0);close(nextin);}if (nextout != 1) {dup2(nextout, 1);close(nextout);}if (pipefds[0]!=-1) {close(pipefds[0]); /* opposite end of our output pipe */}/* Like bash, explicit redirects override pipes,* and the pipe fd is available for dup'ing. */setup_redirects(child,NULL);if (interactive && pi->followup!=PIPE_BG) {/* If we (the child) win the race, put ourselves in the process* group whose leader is the first process in this pipe. */if (pi->pgrp < 0) {pi->pgrp = getpid();}if (setpgid(0, pi->pgrp) == 0) {tcsetpgrp(2, pi->pgrp);}}pseudo_exec(child);}/* put our child in the process group whose leader is thefirst process in this pipe */if (pi->pgrp < 0) {pi->pgrp = child->pid;}/* Don't check for errors. The child may be dead already,* in which case setpgid returns error code EACCES. */setpgid(child->pid, pi->pgrp);if (nextin != 0)close(nextin);if (nextout != 1)close(nextout);/* If there isn't another process, nextin is garbagebut it doesn't matter */nextin = pipefds[0];} #endifreturn -1; }
View Code
上面关键是这段:
/* OK - call function to do the command */rcode = (cmdtp->cmd) (cmdtp, flag,child->argc-i,&child->argv[i]);if ( !cmdtp->repeatable )flag_repeat = 0;
通过这段代码调用对应的命令执行函数。cmd_tbl_t的结构如下:
struct cmd_tbl_s {char *name; /* Command Name */int maxargs; /* maximum number of arguments */int repeatable; /* autorepeat allowed? *//* Implementation function */int (*cmd)(struct cmd_tbl_s *, int, int, char * const []);char *usage; /* Usage message (short) */ #ifdef CONFIG_SYS_LONGHELPchar *help; /* Help message (long) */ #endif #ifdef CONFIG_AUTO_COMPLETE/* do auto completion on the arguments */int (*complete)(int argc, char * const argv[], char last_char, int maxv, char *cmdv[]); #endif };typedef struct cmd_tbl_s cmd_tbl_t;
对于uboot支持的每一个命令,是通过U_BOOT_CMD宏定义的,他定义了该命令对应的名称name,支持的最大参数rep,重复次数,实现函数cmd,以及输入help命令时,显示的帮助信息usage。
在执行函数cmd中,第一个参数对应该命令结构本身的指针,第二个参数对应flag标记,第三个参数对应参数数目,第四个参数是指针数组,里面存储的是对应参数的指针。
转载于:https://www.cnblogs.com/yeqluofwupheng/p/7372849.html