1报童模型的定义和阐述
每天早上,报童以批发价ccc元/份采购当天的报纸,然后以零售价ppp元/份售卖。如果当天报纸没有卖完,则以sss元/份的价格卖给废品回收站。不失一般性,假设p>c>sp > c > sp>c>s。用随机变量DDD表示当天的需求量,并已知其概率分布函数和密度分布函数分别为F(d)和f(d)F(d)和f(d)F(d)和f(d)。求使得期望收益最大的采购量xxx。
拓展:未满足需要将支付惩罚成本rrr。
2求解过程
推导可得:
max(x,D)+min(x,D)=x+D;min(x,0)=−max(−x,0)max(x,D)+min(x,D)=x+D; min(x,0)=-max(-x,0)max(x,D)+min(x,D)=x+D;min(x,0)=−max(−x,0)
2.1利润函数
将上述公式带入利润函数求解:
π(x,D)π(x,D)π(x,D)
=p⋅min(x,D)+s⋅max(x−D,0)−c⋅x=p⋅min(x,D)+s⋅max(x−D,0)−c⋅x=p⋅min(x,D)+s⋅max(x−D,0)−c⋅x
=p⋅min(x,D)+s⋅[max(x,D)−D]−c⋅x=p⋅min(x,D)+s⋅[max(x,D)−D]−c⋅x=p⋅min(x,D)+s⋅[max(x,D)−D]−c⋅x
=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−c⋅x
=(p−s)⋅min(x,D)−(c−s)⋅x=(p−s)⋅min(x,D)−(c−s)⋅x=(p−s)⋅min(x,D)−(c−s)⋅x
拓展的利润函数求解:
π(x,D)π(x,D)π(x,D)
=p⋅min(x,D)+s⋅max(x−D,0)−r⋅max(D−x,0)−c⋅x=p⋅min(x,D)+s⋅max(x−D,0)-r⋅max(D-x,0)-c⋅x=p⋅min(x,D)+s⋅max(x−D,0)−r⋅max(D−x,0)−c⋅x
=p⋅min(x,D)+s⋅[max(x,D)−D]−r⋅[−min(x−D,0)]−c⋅x=p⋅min(x,D)+s⋅[max(x,D)−D]−r⋅[-min(x-D,0)]-c⋅x=p⋅min(x,D)+s⋅[max(x,D)−D]−r⋅[−min(x−D,0)]−c⋅x
=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−r⋅[−min(x,D)+D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[-min(x,D)+D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−r⋅[−min(x,D)+D]−c⋅x
=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−r⋅[max(x,D)−x−D+D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[max(x,D)-x-D+D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−r⋅[max(x,D)−x−D+D]−c⋅x
=(p−s)⋅min(x,D)−r⋅max(x,D)−(c−s−r)⋅x=(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x=(p−s)⋅min(x,D)−r⋅max(x,D)−(c−s−r)⋅x
2.2期望利润函数
原模型的期望利润函数:
E[π(x,D)]E[π(x,D)]E[π(x,D)]
=(p−s)⋅E[min(x,D)]−(c−s)⋅x=(p−s)⋅E[min(x,D)]−(c−s)⋅x=(p−s)⋅E[min(x,D)]−(c−s)⋅x
=(p−s)∫0∞min(x,d)f(d)dd−(c−s)⋅x.= (p-s)\int_0^\infty min(x,d)f(d)dd\,−(c−s)⋅x.=(p−s)∫0∞min(x,d)f(d)dd−(c−s)⋅x.
拓展的期望利润函数:
E[π(x,D)]E[π(x,D)]E[π(x,D)]
=(p−s)⋅min(x,D)−r⋅max(x,D)−(c−s−r)⋅x=(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x=(p−s)⋅min(x,D)−r⋅max(x,D)−(c−s−r)⋅x
=(p−s)∫0∞min(x,d)f(d)dd−r∫0∞max(x,d)f(d)dd−(c−s−r)⋅x.= (p-s)\int_0^\infty min(x,d)f(d)dd\,-r\int_0^\infty max(x,d)f(d)dd\,−(c−s-r)⋅x.=(p−s)∫0∞min(x,d)f(d)dd−r∫0∞max(x,d)f(d)dd−(c−s−r)⋅x.
2.3求解期望收益最大时的采购量
为使原函数期望收益最大,对期望收益求采购量的偏导,并令其值为000,即
∂E[π(x,D)]∂x=0\frac{∂ E [ π ( x , D ) ] }{∂ x} = 0∂x∂E[π(x,D)]=0
∂E[π(x,D)]∂x\frac{∂ E [ π ( x , D ) ] }{∂ x}∂x∂E[π(x,D)]
=(p−s)⋅∂∂x(∫0∞min(x,d)f(d)dd)−(c−s)= ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ( x , d ) f ( d ) d d\, ) − ( c − s )=(p−s)⋅∂x∂(∫0∞min(x,d)f(d)dd)−(c−s)
=(p−s)⋅∂∂x(∫0xd⋅f(d)dd+∫x∞x⋅f(d)dd)−(c−s)= ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d ) − ( c − s )=(p−s)⋅∂x∂(∫0xd⋅f(d)dd+∫x∞x⋅f(d)dd)−(c−s)
=(p−s)⋅[∫0x∂(d⋅f(d))∂xdd+∫x∞∂(x⋅f(d))∂xdd]−(c−s)= ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s )=(p−s)⋅[∫0x∂x∂(d⋅f(d))dd+∫x∞∂x∂(x⋅f(d))dd]−(c−s)
=(p−s)⋅∫x∞f(d)dd−(c−s)=(p−s)⋅[1−F(x)]−(c−s)= ( p − s ) ⋅ \int_x^\infty f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − ( c − s )=(p−s)⋅∫x∞f(d)dd−(c−s)=(p−s)⋅[1−F(x)]−(c−s)
显然,上式=0=0=0时,F(x)=p−cp−s=γF(x)=\frac{p−c}{p−s}=γF(x)=p−sp−c=γ,则
x=F−1(γ)x=F^{-1}(γ)x=F−1(γ)
同理,我们使拓展利润函数期望收益最大:
∂E[π(x,D)]∂x=0\frac{∂ E [ π ( x , D ) ] }{∂ x}=0∂x∂E[π(x,D)]=0
=(p−s)⋅∂∂x(∫0∞min(x,d)f(d)dd)−r⋅∂∂x(∫0∞max(x,d)f(d)dd)−(c−s−r)= ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ( x , d ) f ( d ) d d\, ) -r⋅\frac{∂} {∂x} ( \int_0^\infty max(x,d)f(d)dd\, ) − ( c − s -r)=(p−s)⋅∂x∂(∫0∞min(x,d)f(d)dd)−r⋅∂x∂(∫0∞max(x,d)f(d)dd)−(c−s−r)
=(p−s)⋅∂∂x(∫0xd⋅f(d)dd+∫x∞x⋅f(d)dd)−r⋅∂∂x(∫0xx⋅f(d)dd+∫x∞d⋅f(d)dd)−(c−s−r)= ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d \, )-r ⋅ \frac{∂} {∂x} (\int_0^x x⋅ f ( d ) d d +\int_x^\infty d ⋅ f ( d ) d d ) − ( c − s-r )=(p−s)⋅∂x∂(∫0xd⋅f(d)dd+∫x∞x⋅f(d)dd)−r⋅∂x∂(∫0xx⋅f(d)dd+∫x∞d⋅f(d)dd)−(c−s−r)
=(p−s)⋅[∫0x∂(d⋅f(d))∂xdd+∫x∞∂(x⋅f(d))∂xdd]−r⋅[∫0x∂(x⋅f(d))∂xdd+∫x∞∂(d⋅f(d))∂xdd]−(c−s−r)= ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] -r ⋅ [ \int_0^x \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s-r )=(p−s)⋅[∫0x∂x∂(d⋅f(d))dd+∫x∞∂x∂(x⋅f(d))dd]−r⋅[∫0x∂x∂(x⋅f(d))dd+∫x∞∂x∂(d⋅f(d))dd]−(c−s−r)
=(p−s)⋅∫x∞f(d)dd−r⋅∫0xf(d)dd−(c−s)=(p−s)⋅[1−F(x)]−r⋅F(x)−(c−s−r)= ( p − s ) ⋅ \int_x^\infty f ( d ) d d-r ⋅ \int_0^x f ( d ) d d− ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] – r ⋅ F(x) − ( c − s-r )=(p−s)⋅∫x∞f(d)dd−r⋅∫0xf(d)dd−(c−s)=(p−s)⋅[1−F(x)]−r⋅F(x)−(c−s−r)
显然,上式=0=0=0时,F(x)=p−c+rp−s+r=γF(x)=\frac{p−c+r}{p−s+r}=γF(x)=p−s+rp−c+r=γ,则x=F−1(γ)x=F^{-1}(γ)x=F−1(γ)
参考博客:
报童问题(3)-深入分析
报童问题的简单解法
报童问题 (The Newsvendor Problem)