1报童模型的定义和阐述

每天早上,报童以批发价ccc元/份采购当天的报纸,然后以零售价ppp元/份售卖。如果当天报纸没有卖完,则以sss元/份的价格卖给废品回收站。不失一般性,假设p>c>sp > c > sp>c>s。用随机变量DDD表示当天的需求量,并已知其概率分布函数和密度分布函数分别为F(d)和f(d)F(d)和f(d)F(d)f(d)。求使得期望收益最大的采购量xxx

拓展:未满足需要将支付惩罚成本rrr

2求解过程

推导可得:
max(x,D)+min(x,D)=x+D;min(x,0)=−max(−x,0)max(x,D)+min(x,D)=x+D; min(x,0)=-max(-x,0)max(x,D)+min(x,D)=x+D;min(x,0=max(x,0)

2.1利润函数

将上述公式带入利润函数求解:
π(x,D)π(x,D)π(x,D)
=p⋅min(x,D)+s⋅max(x−D,0)−c⋅x=p⋅min(x,D)+s⋅max(x−D,0)−c⋅x=pmin(x,D)+smax(xD,0)cx
=p⋅min(x,D)+s⋅[max(x,D)−D]−c⋅x=p⋅min(x,D)+s⋅[max(x,D)−D]−c⋅x=pmin(x,D)+s[max(x,D)D]cx
=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−c⋅x=pmin(x,D)+s[x+Dmin(x,D)D]cx
=(p−s)⋅min(x,D)−(c−s)⋅x=(p−s)⋅min(x,D)−(c−s)⋅x=(ps)min(x,D)(cs)x

拓展的利润函数求解:
π(x,D)π(x,D)π(x,D)
=p⋅min(x,D)+s⋅max(x−D,0)−r⋅max(D−x,0)−c⋅x=p⋅min(x,D)+s⋅max(x−D,0)-r⋅max(D-x,0)-c⋅x=pmin(x,D)+smax(xD,0)rmax(Dx,0)cx
=p⋅min(x,D)+s⋅[max(x,D)−D]−r⋅[−min(x−D,0)]−c⋅x=p⋅min(x,D)+s⋅[max(x,D)−D]−r⋅[-min(x-D,0)]-c⋅x=pmin(x,D)+s[max(x,D)D]r[min(xD,0)]cx
=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−r⋅[−min(x,D)+D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[-min(x,D)+D]−c⋅x=pmin(x,D)+s[x+Dmin(x,D)D]r[min(x,D)+D]cx
=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]−r⋅[max(x,D)−x−D+D]−c⋅x=p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[max(x,D)-x-D+D]−c⋅x=pmin(x,D)+s[x+Dmin(x,D)D]r[max(x,D)xD+D]cx
=(p−s)⋅min(x,D)−r⋅max(x,D)−(c−s−r)⋅x=(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x=(ps)min(x,D)rmax(x,D)(csr)x

2.2期望利润函数

原模型的期望利润函数:
E[π(x,D)]E[π(x,D)]E[π(x,D)]
=(p−s)⋅E[min(x,D)]−(c−s)⋅x=(p−s)⋅E[min(x,D)]−(c−s)⋅x=(ps)E[min(x,D)](cs)x
=(p−s)∫0∞min(x,d)f(d)dd−(c−s)⋅x.= (p-s)\int_0^\infty min(x,d)f(d)dd\,−(c−s)⋅x.=(ps)0min(x,d)f(d)dd(cs)x.

拓展的期望利润函数:
E[π(x,D)]E[π(x,D)]E[π(x,D)]
=(p−s)⋅min(x,D)−r⋅max(x,D)−(c−s−r)⋅x=(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x=(ps)min(x,D)rmax(x,D)(csr)x
=(p−s)∫0∞min(x,d)f(d)dd−r∫0∞max(x,d)f(d)dd−(c−s−r)⋅x.= (p-s)\int_0^\infty min(x,d)f(d)dd\,-r\int_0^\infty max(x,d)f(d)dd\,−(c−s-r)⋅x.=(ps)0min(x,d)f(d)ddr0max(x,d)f(d)dd(csr)x.

2.3求解期望收益最大时的采购量

为使原函数期望收益最大,对期望收益求采购量的偏导,并令其值为000,即

∂E[π(x,D)]∂x=0\frac{∂ E [ π ( x , D ) ] }{∂ x} = 0xE[π(x,D)]=0

∂E[π(x,D)]∂x\frac{∂ E [ π ( x , D ) ] }{∂ x}xE[π(x,D)]

=(p−s)⋅∂∂x(∫0∞min⁡(x,d)f(d)dd)−(c−s)= ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ⁡ ( x , d ) f ( d ) d d\, ) − ( c − s )=(ps)x(0min(x,d)f(d)dd)(cs)

=(p−s)⋅∂∂x(∫0xd⋅f(d)dd+∫x∞x⋅f(d)dd)−(c−s)= ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d ) − ( c − s )=(ps)x(0xdf(d)dd+xxf(d)dd)(cs)

=(p−s)⋅[∫0x∂(d⋅f(d))∂xdd+∫x∞∂(x⋅f(d))∂xdd]−(c−s)= ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s )=(ps)[0xx(df(d))dd+xx(xf(d))dd](cs)

=(p−s)⋅∫x∞f(d)dd−(c−s)=(p−s)⋅[1−F(x)]−(c−s)= ( p − s ) ⋅ \int_x^\infty f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − ( c − s )=(ps)xf(d)dd(cs)=(ps)[1F(x)](cs)

显然,上式=0=0=0时,F(x)=p−cp−s=γF(x)=\frac{p−c}{p−s}=γF(x)=pspc=γ,则

x=F−1(γ)x=F^{-1}(γ)x=F1(γ)

同理,我们使拓展利润函数期望收益最大:

∂E[π(x,D)]∂x=0\frac{∂ E [ π ( x , D ) ] }{∂ x}=0xE[π(x,D)]=0

=(p−s)⋅∂∂x(∫0∞min⁡(x,d)f(d)dd)−r⋅∂∂x(∫0∞max(x,d)f(d)dd)−(c−s−r)= ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ⁡ ( x , d ) f ( d ) d d\, ) -r⋅\frac{∂} {∂x} ( \int_0^\infty max(x,d)f(d)dd\, ) − ( c − s -r)=(ps)x(0min(x,d)f(d)dd)rx(0max(x,d)f(d)dd)(csr)

=(p−s)⋅∂∂x(∫0xd⋅f(d)dd+∫x∞x⋅f(d)dd)−r⋅∂∂x(∫0xx⋅f(d)dd+∫x∞d⋅f(d)dd)−(c−s−r)= ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d \, )-r ⋅ \frac{∂} {∂x} (\int_0^x x⋅ f ( d ) d d +\int_x^\infty d ⋅ f ( d ) d d ) − ( c − s-r )=(ps)x(0xdf(d)dd+xxf(d)dd)rx(0xxf(d)dd+xdf(d)dd)(csr)

=(p−s)⋅[∫0x∂(d⋅f(d))∂xdd+∫x∞∂(x⋅f(d))∂xdd]−r⋅[∫0x∂(x⋅f(d))∂xdd+∫x∞∂(d⋅f(d))∂xdd]−(c−s−r)= ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] -r ⋅ [ \int_0^x \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s-r )=(ps)[0xx(df(d))dd+xx(xf(d))dd]r[0xx(xf(d))dd+xx(df(d))dd](csr)

=(p−s)⋅∫x∞f(d)dd−r⋅∫0xf(d)dd−(c−s)=(p−s)⋅[1−F(x)]−r⋅F(x)−(c−s−r)= ( p − s ) ⋅ \int_x^\infty f ( d ) d d-r ⋅ \int_0^x f ( d ) d d− ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] – r ⋅ F(x) − ( c − s-r )=(ps)xf(d)ddr0xf(d)dd(cs)=(ps)[1F(x)]rF(x)(csr)

显然,上式=0=0=0时,F(x)=p−c+rp−s+r=γF(x)=\frac{p−c+r}{p−s+r}=γF(x)=ps+rpc+r=γ,则x=F−1(γ)x=F^{-1}(γ)x=F1(γ)


参考博客:
报童问题(3)-深入分析
报童问题的简单解法
报童问题 (The Newsvendor Problem)